Abstract
A "Descoberta de Conhecimento em Bases de Dados" (Knowledge Discovery in Databases, KDD) é um processo composto de várias etapas, iniciando com a coleta de dados para o problema em pauta e finalizando com a interpretação e avaliação dos resultados obtidos. O presente trabalho objetiva mostrar a influência da análise exploratória dos dados no desempenho das técnicas de Mineração de Dados (Data Mining) quanto à classificação de novos padrões por meio da sua aplicação a um problema médico, além de comparar o desempenho delas entre si, visando obter a técnica com o maior percentual de acertos. Pelos resultados obtidos, pode-se concluir que a referida análise, se conduzida de forma adequada, pode trazer importantes melhorias nos desempenhos de quase todas as técnicas abordadas, tornando-se, assim, uma importante ferramenta para a otimização dos resultados finais. Para o problema em estudo, a técnica que envolve um modelo de Programação Linear e uma outra que envolve Redes Neurais foram as técnicas que apresentaram os menores percentuais de erros para os conjuntos de testes, apresentando capacidades de generalização satisfatórias.
Subject
Industrial and Manufacturing Engineering,Business and International Management
Reference23 articles.
1. Statistical Modelling in GLIM;AITKIN M.,1989
2. Using Neural Network Rule Extraction and -Decision Tables for Credit-Risk Evaluation;BAESENS B.;Management Science,2003
3. Residential Real Estate Prices: a Room with a View;BOND M. T.;The Journal of Real Estate Research,2002
4. Robust -Linear Programming Discrimination of Two Linearly Inseparable Sets: Optimization Methods and Software, London, United Kingdom, Taylor and Francis Group;BENNETT K. P.,1992
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献