Climate analysis using neural networks as supporting to the agriculture

Author:

Borella Lucas de Carvalho1,Borella Margareth Rodrigues de Carvalho1ORCID,Corso Leandro Luís1

Affiliation:

1. Universidade de Caxias do Sul, Brasil

Abstract

Abstract The aim of this study is to conduct climate forecasting with models of artificial neural networks as a tool in the decision-making process for the planting of some types of agricultural products. A database with the main climate elements was built from the National Institute of Meteorology (INMET), and those elements that influenced the average temperature value the most were found at a significance level of 0.05. Models of Artificial Neural Networks were developed and tested using Mean Absolute Deviation (MAD), Mean Squared Error (MSE), Root-Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE), before being linked to the best agricultural cultivation forecast value. Twelve neural networks were elaborated, eight of them are related to the temperature forecast and the other four are related to the precipitation forecast. The networks that showed the best performance are those that consider all the elements of climate. It is possible to conclude that the artificial neural networks showed an adequate performance in predicting chaotic time series, and that their results were therefore linked to the optimum cultivation to use for each forecast. A schedule is supplied at the end, indicating the ideal time to plant each of the crops evaluated. Carrot is found to be the best suited crop for the forecasted range over the next five years.

Publisher

FapUNIFESP (SciELO)

Subject

Industrial and Manufacturing Engineering,Business and International Management

Reference33 articles.

1. Weather forecasting model using Artificial Neural Network;Abhishek K.;Procedia Technology,2012

2. Zoneamento de riscos climáticos da cultura da maçã no estado de Santa Catarina;Braga H. J.;Revista Brasileira de Agrometeorologia,2001

3. Solving the quantum many-body problem with artificial neural networks;Carleo G.;Science,2017

4. Apresentação.,2018

5. Uso de Redes Neurais Artificiais na previsão da precipitação de períodos chuvosos;Dantas D.;Revista Espinhaço,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mercado Brasileiro da Maçã e a Sidra;VETOR - Revista de Ciências Exatas e Engenharias;2024-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3