Monitoring the mean with least-squares support vector data description

Author:

Maboudou-Tchao Edgard M.1ORCID

Affiliation:

1. University of Central Florida, USA

Abstract

Abstract: Multivariate control charts are essential tools in multivariate statistical process control (MSPC). “Shewhart-type” charts are control charts using rational subgroupings which are effective in the detection of large shifts. Recently, the one-class classification problem has attracted a lot of interest. Three methods are typically used to solve this type of classification problem. These methods include the k−center method, the nearest neighbor method, one-class support vector machine (OCSVM), and the support vector data description (SVDD). In industrial applications, like statistical process control (SPC), practitioners successfully used SVDD to detect anomalies or outliers in the process. In this paper, we reformulate the standard support vector data description and derive a least squares version of the method. This least-squares support vector data description (LS-SVDD) is used to design a control chart for monitoring the mean vector of processes. We compare the performance of the LS-SVDD chart with the SVDD and T2 chart using out-of-control Average Run Length (ARL) as the performance metric. The experimental results indicate that the proposed control chart has very good performance.

Publisher

FapUNIFESP (SciELO)

Subject

Industrial and Manufacturing Engineering,Business and International Management

Reference34 articles.

1. Convex optimization. Stanford University;Boyd S.,2004

2. Robust Kernel distance multivariate control chart using support vector principles;Camci F.;International Journal of Production Research,2008

3. Least squares one-class support vector machine;Choi Y. S.;Pattern Recognition Letters,2009

4. Support-vector network;Cortes C.;Machine Learning,1995

5. Sparse inverse covariance estimation with the graphical LASSO;Friedman J.;Biostatistics (Oxford, England),2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3