Evidence of bovine viral diarrhea virus transmission by back pond water in experimentally infected piglets

Author:

Nascimento Karla A.1,Mechler Marina L.1,Gatto Igor R.H.1,Almeida Henrique M.S.1,Pollo Andressa S.1,Sant’Ana Fabiano J.F.2,Pedroso Pedro M.O.2,Oliveira Luís G. de1

Affiliation:

1. Universidade Estadual Paulista, Brazil

2. Universidade de Brasília, Brazil

Abstract

ABSTRACT: Swine can be infected by bovine viral diarrhea virus (BVDV). However, transmission routes among pigs are still unknown. The objective of the present study was to induce experimental infection of BVDV-1 in weaned piglets and to assess the potential transmission through pen back pond water, used to facilitate heat exchange of the pigs housed in barns. Two repetitions (BP1 and BP 2) were performed using 12 piglets proven to be free BVDV (n=6 per repetition) allocated into three groups: control, sentinels and infected with two piglets each. The piglets were placed in stainless steel isolators. The infected group received an inoculum containing BVDV-1, Singer strain. The piglets remained in the cabinets for 25 days, during which samples of nasal swab were collected daily and blood sampled weekly. At the end, the piglets were euthanized, necropsied and organ fragments were collected for histopathology, immunohistochemistry and RT-PCR. In the first experiment (BP1) the infected animals shed the virus between days 6 and 21 post-infection. Regarding the sentinel group, shedding occurred in only one piglet, on the 20th day after infection, and seroconversion was observed on the 25th day post-infection. In BP2, infected piglets I3 and I4 shed the virus on days 4 and 21 post-infection, respectively. Only one sentinel piglet (S3) she the virus on day 13 post-infection. Therefore, it was concluded that pigs can become infected with BVDV-1 and shed potentially infectious viral particles consequently, being able to transmit the virus to other pigs through back pond water.

Publisher

FapUNIFESP (SciELO)

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3