Immune response and biochemistry of calves immunized with rMSP1a ( Anaplasma marginale) using carbon nanotubes as carrier molecules

Author:

Silvestre Bruna Torres1,Silveira Júlia Angélica Gonçalves da1,Facury-Filho Elias Jorge1,Carvalho Antônio Último de1,Versiani Alice Freitas1,Estevam Letícia Gracielle Tôrres de Miranda1,Araújo Márcio Sobreira Silva2,Martins-Filho Olindo Assis2,Negrão-Corrêa Deborah Aparecida1,Ribeiro Múcio Flávio Barbosa1

Affiliation:

1. Universidade Federal de Minas Gerais, Brasil

2. Fundação Oswaldo Cruz, Brasil

Abstract

Abstract Vaccination against Anaplasma marginale has been considered an important control strategy for bovine anaplasmosis. Recently, mice immunized with rMSP1 a linked to carbon nanotubes (MWNT) showed significant immune responses, generating a new possibility for use of an inactivated vaccine. The objective of this study was to investigate the cellular and humoral responses in calves immunized with MWNT+rMSP1a , associated with inactivated vaccine of A. marginale produced in vitro, and evaluate the toxic effects of the MWNT on renal and hepatic function. rMSP1a was covalently linked to MWNT. Inactivated vaccine (AmUFMG2) was produced by cultivating A. marginale in IDE8 cells. Twenty-four Holstein calves were divided (four groups) and immunized subcutaneously with PBS and non-carboxylated MWNT (control, G1), AmUFMG2 (G2), MWNT+rMSP1a (G3), and AmUFMG2 with MWNT+rMSP1a (G4). Blood samples were collected for total leukocyte counts, biochemical profiling and evaluation of the cellular and humoral response. Immunization with MWNT+rMSP1a induced increase in the total number of leukocytes, NK cells, in the lymphocyte populations and higher levels of antibodies compared to calves immunized only with AmUFMG2. Furthermore, MWNT did not induce changes in the biochemical profile. These data indicate that MWNT+rMSP1a were able to induce the immune responses more efficiently than AmUFMG2 alone, without generating toxicity.

Publisher

FapUNIFESP (SciELO)

Subject

General Veterinary,Parasitology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3