GENETIC CONTROL AND GENOTYPE-BY-ENVIRONMENT INTERACTION OF WOOD WEIGHT IN Eucalyptus CLONES IN THE STATE OF RIO GRANDE DO SUL, BRAZIL

Author:

Santos Gleison Augusto1,Nunes Andrei Caíque Pires1,Resende Marcos Deon Vilela2,Silva Luciana Duque3,Higa Antonio4,Assis Teotônio Francisco5

Affiliation:

1. Universidade Federal de Viçosa, Brazil

2. Empresa Brasileira de Pesquisa Agropecuária, Brazil

3. Universidade de São Paulo, Brazil

4. Universidade Federal do Paraná, Brazil

5. Assistech Tecnologia em Melhoramento, Brasil

Abstract

ABSTRACT The present study aimed to evaluate the genetic control and genotype-by-environment interaction in wood weight of Eucalyptus clones in four environments located in the state of Rio Grande do Sul, Brazil, aiming to select superior genotypes. In 2007, a network of clonal tests was established with 864 clones of Eucalyptus. At three years of age, diameter at breast height and total height were measured, as was depth of Pilodyn penetration, for indirect inference of wood basic density. The mean annual increment of dry weight (MAIweight) was calculated. Individual heritability of 0.148 and of 0.48 was found for MAIweight and Pilodyn penetration depth, respectively. The genetic correlation between environments ranged from 0.503 to 0.926 for all traits. The genotype-by-environment interaction was significant for the MAIweight index (0.533). From the environment interaction analysis, 3 "improvement areas" were defined for the trait MAIweight. The grouping of the traits wood density and volume to create a wood weight index was essential for a more accurate selection, since there was a change of 37% compared to the ranking of clones for volume. The simultaneous selection for stability and adaptability provided higher gains when compared to selection based on predicted genotypic values between environments. Moreover, MHPRVG allowed an increase in gains compared to the control. Thus, the five best clones were selected based on these criteria: 39912 (E. urophylla), 39659 (E. urophylla), 6808 (E. grandis), 36190 (E. saligna), 39407 (E. grandis x E. urophylla).

Publisher

FapUNIFESP (SciELO)

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3