Development of a convolutional neural network for diagnosing osteoarthritis, trained with knee radiographs from the ELSA-Brasil Musculoskeletal

Author:

Domingues Júlio Guerra1ORCID,Araujo Daniella Castro2ORCID,Costa-Silva Luciana3ORCID,Machado Alexei Manso Corrêa1ORCID,Machado Luciana Andrade Carneiro4ORCID,Veloso Adriano Alonso5ORCID,Barreto Sandhi Maria6ORCID,Telles Rosa Weiss6ORCID

Affiliation:

1. Faculdade de Medicina da Universidade Federal de Minas Gerais, Brazil

2. Instituto de Ciências Exatas da Universidade Federal de Minas Gerais, Brazil; Huna-AI, Brazil

3. Instituto Hermes Pardini, Brazil

4. Hospital das Clínicas da Universidade Federal de Minas Gerais/Empresa Brasileira de Serviços Hospitalares, Brazil

5. Instituto de Ciências Exatas da Universidade Federal de Minas Gerais, Brazil

6. Faculdade de Medicina da Universidade Federal de Minas Gerais, Brazil; Hospital das Clínicas da Universidade Federal de Minas Gerais/Empresa Brasileira de Serviços Hospitalares, Brazil

Abstract

Abstract Objective: To develop a convolutional neural network (CNN) model, trained with the Brazilian “Estudo Longitudinal de Saúde do Adulto Musculoesquelético” (ELSA-Brasil MSK, Longitudinal Study of Adult Health, Musculoskeletal) baseline radiographic examinations, for the automated classification of knee osteoarthritis. Materials and Methods: This was a cross-sectional study carried out with 5,660 baseline posteroanterior knee radiographs from the ELSA-Brasil MSK database (5,660 baseline posteroanterior knee radiographs). The examinations were interpreted by a radiologist with specific training, and the calibration was as established previously. Results: The CNN presented an area under the receiver operating characteristic curve of 0.866 (95% CI: 0.842-0.882). The model can be optimized to achieve, not simultaneously, maximum values of 0.907 for accuracy, 0.938 for sensitivity, and 0.994 for specificity. Conclusion: The proposed CNN can be used as a screening tool, reducing the total number of examinations evaluated by the radiologists of the study, and as a double-reading tool, contributing to the reduction of possible interpretation errors.

Publisher

FapUNIFESP (SciELO)

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3