Interactive key (Lucid) for identification of fungi in vegetable seeds

Author:

Pierozzi Caroline Geraldi1ORCID,Fujihara Ricardo Toshio2ORCID,Souza Efrain de Santana3ORCID,Pizetta Marília1ORCID,Sartori Maria Márcia Pereira1ORCID,Kronka Adriana Zanin1ORCID

Affiliation:

1. São Paulo State University, Brazil

2. Federal University of São Carlos, Brazil

3. Tocantins State University, Brazil

Abstract

ABSTRACT Interactive keys are tools that aid research and technical work since identification of organisms has become increasingly present in the scientific and academic context. An interactive key was developed with the software Lucid v. 3.3 for the identification of eleven fungal species associated with onion, carrot, pepper and tomato seeds. It was based on a matrix composed of six features: crop, conidium, conidiophore, color of long conidiophore, color of mycelium and presence of setae, besides 21 character states. In addition, descriptions, illustrations and high-resolution photographs of the morphological characters and states were made available to aid in the correct identification of fungal species. Validation of the interactive key was performed by distinct groups of volunteers: (i) graduate students with prior knowledge and using the interactive key; (ii) undergraduate students with little prior knowledge and using the interactive key, and (iii) undergraduate students with little prior knowledge and using the conventional identification system such as the printed manuals used in seed pathology laboratories. We analyzed the time spent by each volunteer to evaluate 25 seeds infected with the fungal species in the key, as well as the percentage of success and the difficulty level for each participant. The high percentage of correct answers with the use of the interactive key and the ease of use by the volunteers confirmed its efficiency because there was an increase in the identification accuracy when compared to the conventional system. Furthermore, the rate of success and the difficulty level presented low variability within groups (i) and (ii). These results are a consequence of the interaction of the user with characteristics of the developed tool, such as high-resolution photographs, which faithfully reproduce the fungal characteristics observed in the seeds under a stereomicroscope. Thus, the interactive key presented here can aid in teaching, institutional and commercial research, inspection and certification of seeds, making diagnosis safer and more accurate. The key is available for free at https://keys.lucidcentral.org/keys/v3/seed_fungi/.

Publisher

FapUNIFESP (SciELO)

Subject

Plant Science

Reference35 articles.

1. Developing an expert system for plant disease diagnosis;Abu-Naser S. S;Journal of Artificial Intelligence,2008

2. Principles of seed pathology;Agarwal V. K,1996

3. Agrianual 2015: Anuário da Agricultura Brasileira,2015

4. A pictorial guide to the identification of seedborne fungi of sorghum, pearl millet, finger millet, chickpea, pigeonpea, and groundnut;Ahmed K. M,1993

5. Desenvolvimento e validação de um sistema especialista para identificar fungos na análise sanitária de sementes;Alves M.C;Revista Brasileira de Sementes,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3