Magnetic pulse welding on the cutting edge of industrial applications

Author:

Miranda R. M.1,Tomás B.1,Santos T. G.1,Fernandes N.1

Affiliation:

1. Universidade Nova de Lisboa, Portugal

Abstract

Magnetic Pulse Welding (MPW) applies the electromagnetic principles postulated in the XIXth century and later demonstrated. In recent years the process has been developed to meet highly demanding market needs involving dissimilar material joining, specially involving difficult-to-weld materials. It is a very high speed joining process that uses an electromagnetic force to accelerate one material against the other, resulting in a solid state weld with no external heat source and no thermal distortions. A high power source, the capacitor, a discharge switch and a coil constitute the minimum equipment necessary for this process. A high intensity current flowing through a coil near an electrically conductive material, locally produce an intense magnetic field that generates eddy currents in the flyer according to Lenz law. The induced electromotive force gives rise to a current whose magnetic field opposes the original change in magnetic flux. The effect of this secondary current moving in the primary magnetic field is the generation of a Lorentz force, which accelerates the flyer at a very high speed. If a piece of material is placed in the trajectory of the flyer, the impact will produce an atomic bond in a solid state weld. This paper discusses the fundamentals of the process in terms of phenomenology and analytical modeling and numerical simulation. Recent industrial applications are presented in terms of materials, joint configurations and real examples as well as advantages and disadvantages of the process.

Publisher

FapUNIFESP (SciELO)

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Reference35 articles.

1. The Cold Welding Process is being used for more and more high-volume applications;Weber Austin,2002

2. Pulse-Magnetic Processing Technology when making parts units of Aerospace Engineering;Glouschenkov V.A;Journal de Physique IV,1997

3. Magnetic Pulse Welding of Automotive HVAC Parts. Pulsar;Shribman V,2007

4. Benefits of the Magnetic Pulse process for Welding Dissimilar Metals;Shribman V;Welding Journal,2008

5. Effect of Process Parameters on Electromagnetic Welding of Aluminum Sheets;Kore S.D;International Journal of Impact Engineering,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3