Welding shape memory alloys with NdYAG lasers

Author:

Quintino Luisa1,Miranda Rosa M.2

Affiliation:

1. Universidade Técnica de Lisboa, Portugal

2. Universidade Nova de Lisboa, Portugal

Abstract

The demand of emerging joining techniques for shape memory alloys (SMA) has become of great importance, as their functional properties namely shape memory effect (SME) and superelasticity (SE) present unique solutions for state-of-the-art applications. Welding of SMAs is a challenge due to the risk of reduced mechanical performance after laser processing. The wider application of these alloys in various sectors as aerospace, medical or electronic industry is hindered by the limitations in its processing. The need to weld SMAs to other materials is pressing for applications in the above referred sectors. In dissimilar joints the need to understand materials behavior is even more challenging since base materials have different physical properties leading to different heat flow, convection processes and residual stress distribution. The chemical composition across the weld pool varies and intermetallic compounds are formed. Research detailing the effects of laser processing on NiTi is essential to overcome many of these challenges. The objectives of the current study are to analyze the effects of laser welding in the weld shape of both similar and dissimilar joints of NiTi to stainless steel and titanium alloys.

Publisher

FapUNIFESP (SciELO)

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Reference22 articles.

1. Shape Memory Materials;Otsuka K.,1998

2. Effect of Low-Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi;Buehler W.J.;Journal of Applied Physics

3. A Use Hypothesis for 55 Nitinol Wire for Orthodontics;Andreasen, George F.;The Angle Orthodontist

4. Shape Memory Alloys: Modeling and Engineering Applications;Lagoudas, Dimitris C.,2008

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3