Nonparametric Item Response Models: A Comparison on Recovering True Scores

Author:

Franco Vithor Rosa1ORCID,Wiberg Marie2ORCID,Bastos Rafael Valdece Sousa1ORCID

Affiliation:

1. São Francisco University, Brasil

2. Umeå University, Sweden

Abstract

Abstract Nonparametric procedures are used to add flexibility to models. Three nonparametric item response models have been proposed, but not directly compared: the Kernel smoothing (KS-IRT); the Davidian-Curve (DC-IRT); and the Bayesian semiparametric Rasch model (SP-Rasch). The main aim of the present study is to compare the performance of these procedures in recovering simulated true scores, using sum scores as benchmarks. The secondary aim is to compare their performances in terms of practical equivalence with real data. Overall, the results show that, apart from the DC-IRT, which is the model that performs the worse, all the other models give results quite similar to those when sum scores are used. These results are followed by a discussion with practical implications and recommendations for future studies.

Publisher

FapUNIFESP (SciELO)

Reference47 articles.

1. A Bayesian Beta-Mixture Model for Nonparametric IRT (BBM-IRT);Arenson E.;Journal of Modern Applied Statistical Methods,2018

2. A class of distributions which includes the normal ones;Azzalini A.;Scandinavian Journal of Statistics,1985

3. sn: The Skew-Normal and Related Distributions Such as the Skew-t R package retrieved;Azzalini A.,2018

4. The isotonic regression problem and its dual;Barlow R. E.;Journal of the American Statistical Association,1972

5. mirt: A multidimensional item response theory package for the R environment;Chalmers R. P.;Journal of Statistical Software,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3