GAS EXCHANGE AND HYDROPONIC PRODUCTION OF ZUCCHINI UNDER SALT STRESS AND H2O2 APPLICATION

Author:

DANTAS MAÍLA VIEIRA1ORCID,LIMA GEOVANI SOARES DE1ORCID,GHEYI HANS RAJ1ORCID,PINHEIRO FRANCISCO WESLEY ALVES1ORCID,SILVA PETTERSON COSTA CONCEIÇÃO1ORCID,SOARES LAURIANE ALMEIDA DOS ANJOS1ORCID

Affiliation:

1. Universidade Federal de Campina Grande, Brazil

Abstract

ABSTRACT Knowledge about the effect of chemical conditioners on the reduction of the deleterious effects caused by salinity on crops is of great importance for the expansion of the cultivation of vegetable crops such as zucchini in the semi-arid region of the Northeast. In this context, the objective of the present study was to evaluate the effect of the foliar application of hydrogen peroxide as a mitigator of salt stress on the gas exchange, production, and postharvest fruit quality of zucchini cultivated in a hydroponic system. The study was conducted in NFT-type (Nutrient Film Technique) hydroponic system in a greenhouse, in Pombal — PB, Brazil. The experimental design was completely randomized, in a 4 × 4 factorial scheme, corresponding to four levels of electrical conductivity of the nutrient solution - ECns (2.1 (control); 3.6; 5.1 and 6.6 dS m−1), and four concentrations of hydrogen peroxide - H2O2 (0; 20; 40 and 60 μM), with three replicates. Nutrient solution with electrical conductivity above 2.1 dS m−1 caused a reduction in gas exchange and the total number of fruits of zucchini. An increase in nutrient solution salinity levels increased the total soluble solids content of the fruits and the initial fluorescence of zucchini. Under conditions of nutrient solution salinity above 2.1 dS m−1, hydrogen peroxide could not mitigate the effects of salt stress. Application of 20 μM of H2O2 when the plants were grown in a nutrient solution of 2.1 dS m−1 promoted higher total fruit weight and basal diameter of the fruits.

Publisher

FapUNIFESP (SciELO)

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3