Formation of guava seedlings under irrigation with water of different cationic natures and salicylic acid

Author:

Queiroga Claudiene M. de1ORCID,Lima Geovani S. de1ORCID,Torres Rafaela A. F.1ORCID,Paiva Francisco J. da S.1ORCID,Soares Lauriane A. dos A.1ORCID,Gheyi Hans R.1ORCID

Affiliation:

1. Universidade Federal de Campina Grande, Brazil

Abstract

ABSTRACT The objective of this study was to evaluate gas exchange, biomass, and quality of guava seedlings as a function of the cationic nature of the water used in irrigation and foliar application of salicylic acid. The experiment was carried out in a greenhouse in Pombal, PB, Brazil, using a randomized block design, in a 6 × 4 factorial scheme with six cationic compositions of irrigation water [S1 - Control (supply water); S2 - Na+; S3 - Ca2+; S4 - Na++Ca2+; S5 - Mg2+, and S6 - Na++Ca2++Mg2+], associated with four concentrations of salicylic acid (0, 1.3, 2.6, and 3.9 mM), with 3 replicates. Plants in control (S1) were irrigated with water of electrical conductivity (ECw) of 0.3 dS m-1, while in the other treatments were irrigated with different types of water and had an ECw of 4.3 dS m-1, consisting of different cations, in the form of chloride. In the seedling formation phase, guava plants were sensitive to calcic water, which resulted in a marked decrease in their growth. Stomatal conductance, transpiration, and biomass accumulation of guava seedlings were more affected by variation in electrical conductivity than by cationic nature of the water. Salicylic acid at concentrations of 2.9 and 1.9 mM increased stomatal conductance and stem dry biomass, respectively, of guava seedlings. Water with ECw of 4.3 dS m-1 allowed the formation of guava seedlings with acceptable quality for transplanting to the field, regardless of the cationic nature of the water.

Publisher

FapUNIFESP (SciELO)

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3