EFFECT OF VETIVER ROOTS ON SOIL RESISTANCE TO PENETRATION IN A TYPIC FLUVIC NEOSSOL IN THE SÃO FRANCISCO RIVERBANK

Author:

Machado Lorena1ORCID,Holanda Francisco Sandro Rodrigues1ORCID,Pedrotti Alceu1ORCID,Ferreira Olavo José Marques1ORCID,Araújo Filho Renisson Neponuceno de2ORCID,Moura Marks Melo1ORCID

Affiliation:

1. Universidade Federal de Sergipe, Brazil

2. Universidade Federal do Tocantins, Brazil

Abstract

ABSTRACT The aim of this study was to evaluate the effect of the root of vetiver grass (Chrysopogon zizanioides (L.) Robert) on the soil Resistance to penetration (RP) in the margins of the lower São Francisco River. Vetiver grass seedlings were planted on the riverbank margins in order to increase soil resistance to erosion processes, and RP assessments were made at soil depths of 0-0.20, 0.20-0.40, and 0.40-0.60 m in different situations (near the plants and within rows). RP data was obtained using an automated penetrometer. Gravimetric moisture data was also collected, as well as particle size data by densimetry, and root density data by the monolith method. The results of the RP, moisture, and root density studies were subjected to analysis of variance (p <0.05) and then the averages were compared by the Tukey test using SISVAR software. The samples next to the vetiver grass showed an average RP of 1793.94 kPa and an average moisture content of 11.78%, statistically differing from that of the sampled points within rows. RP and soil moisture did not differ statistically at the depth assessed. The vetiver grass produced an adequate ground cover, leading to higher water retention and hence a reduced resistance to penetration.

Publisher

FapUNIFESP (SciELO)

Subject

General Agricultural and Biological Sciences

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3