TARGET TRACKING IN COMPLEX SCENES BASED ON COMPUTER VISION

Author:

Shang Huanan1ORCID

Affiliation:

1. Huang S&T College, China

Abstract

ABSTRACT Objective: Use the deep learning network model to identify key content in videos. Methodology: After reviewing the literature on computer vision, the feature extraction of the target video from the network using deep learning with the time-series data enhancement method was performed. The preprocessing method for data augmentation and Spatio-temporal feature extraction on the video based on LI3D network was explained. Accuracy rate, precision, and recall were used as indices. Results: The three indicators increased from 0.85, 0.88, and 0.84 to 0.89, 0.90, and 0.88, respectively. This shows that the LI3D network model maintains a high recall rate accompanied by high accuracy after data augmentation. The accuracy and loss function curves of the training phase show that the accuracy of the network is greatly improved compared to I3D. Conclusion: The experiment proves that the LI3D model is more stable and has faster convergence. By comparing the accuracy curve and loss function curve during LI3D, LI3D-LSTM, and LI3D-BiLSTM training, it is found that the LI3D-BiLSTM model converges faster. Level of evidence II; Therapeutic studies - investigation of treatment results.

Publisher

FapUNIFESP (SciELO)

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Reference6 articles.

1. A Novel Trail Detection and Scene Understanding Framework for a Quadrotor UAV With Monocular Vision;Liu Y;IEEE Sensors Journal,2017

2. A target tracking and location robot system based on omnistereo vision;Cai C;Industrial Robot,2017

3. Fuzzy logic controller for predictive vision-based target tracking with an unmanned aerial vehicle;Harik EHC;Advanced Robotics,2017

4. Image segmentation method for robot vision;Lei J;Systems Engineering & Electronics,2017

5. Motion priors based on goals hierarchies in pedestrian tracking applications;Madrigal F;Machine Vision & Applications,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3