Morpho-physiological and biochemical mechanisms of copper tolerance in Handroanthus heptaphyllus

Author:

Kuinchtner Caroline Castro1ORCID,Aguilar Marcos Vinícius Miranda1ORCID,Senhor Daiane Franchesca1ORCID,Birck Thalía Preussler1ORCID,Brunetto Gustavo1ORCID,Tabaldi Luciane Almeri1ORCID

Affiliation:

1. Universidade Federal de Santa Maria/UFSM, Brazil

Abstract

ABSTRACT Copper (Cu)-contaminated soils are becoming more common, and phytoremediation is an effective strategy for reducing the negative effects of Cu on soils. Tree species are commonly used for this technique because they act as a barrier to this type of contamination. It is necessary to evaluate Cu tolerance and toxicity thresholds together with the harm this metal causes to plants. The objective of the current study was to investigate the tolerance of Handroanthus heptaphyllus plants to Cu through morpho-physiological, biochemical, and tissue Cu concentration analyses. H. heptaphyllus seedlings were subjected to nutrient solutions with varying concentrations of copper: 0, 5, 32, 64, 96, and 128 µM Cu in a hydroponic system. We conducted a morpho-physiological trait analysis on shoot height, root length, dry weight, morphological variables of the root system, leaf area, and photosynthetic variables. In addition, we also looked into photosynthetic pigments, antioxidant enzymes, lipid peroxidation, hydrogen peroxide concentration, and Cu accumulation in tissues. The values obtained for variables such as dry weight and pigments did not show significant differences, regardless of Cu concentration. Moreover, photosynthetic and transpiration rates were negatively affected only at the highest Cu concentration (128 µM). Overall, excess Cu had no effect on Handroanthus heptaphyllus below 128 µM. Cu accumulated mainly in the roots without a decrease in biomass, which could indicate the tolerance of the species to this metal as well as its great potential in the phytostabilization of Cu in contaminated soils.

Publisher

FapUNIFESP (SciELO)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3