Silvopastoral systems drive the nitrogen-cycling bacterial community in soil

Author:

Barros Felipe Martins do Rêgo1,Fracetto Giselle Gomes Monteiro1,Fracetto Felipe José Cury1,Mendes Júnior José Petrônio1,Araújo Victor Lucas Vieira Prudêncio de1,Lira Junior Mario Andrade1

Affiliation:

1. Universidade Federal Rural de Pernambuco/UFRPE, Brazil

Abstract

ABSTRACT Intercropping tree legumes with forage grasses in a silvopastoral system can avoid pasture degradation benefiting the soil. In such a system, nitrogen (N) is supplied by symbiosis between legumes and bacteria. However, the pasture quality determines the action of free-living nitrogen-fixing bacteria, which possess nifH genes, which encode nitrogenase enzyme. Ammonium-oxidizing bacteria (AOB), involved in the nitrification step, can be evaluated by specific regions of the 16S rRNA corresponding to AOB. Thus, we investigated the influence of the introduction of tree legumes into a silvopastoral system on the community structure and abundance of total bacteria, diazotrophic bacteria and ammonium-oxidizing bacteria by DGGE (denaturing gradient gel electrophoresis) and real-time qPCR (quantitative PCR). The experiment involved nine plots of one hectare each, planted with sabia (Mimosa caesalpinifolia), a Gliricidia species (Gliricidia sepium), and a Brachiaria species (Brachiaria decumbens) in a randomized block design, forming three treatments: I-Brachiaria intercropped with sabia; II-Brachiaria intercropped with Gliricidia and III-Brachiaria only, with three replicates. The structures of the total bacterial and ammonium-oxidizing bacterial communities were influenced by tree legume introduction, possibly through modification of the soil chemical attributes. The copy numbers of total bacteria, ammonium-oxidizing bacteria and diazotrophic bacteria were higher in soils planted with legumes, which provided better conditions for microbial growth compared to planting with the Brachiaria species alone. Silvopastoral management with tree legumes improves the biological quality of soil, favouring the bacterial community linked to N-cycling.

Publisher

FapUNIFESP (SciELO)

Subject

Soil Science,General Veterinary,Agronomy and Crop Science,Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3