Affiliation:
1. Universidade Federal do Paraná, Brazil
Abstract
Abstract: Introduction: The objective of this study is to describe a model of knee arthroscopy simulator that is affordable, low-cost and easily reproducible, aiming to enable the diffusion of more effective active teaching and training methodologies. Methods: For the creation of the arthroscopic camera, an endoscopic camera for mobile phones and computers model SXT-5.0M manufactured by KKMOON were used. The camera was introduced in a metal tube, which was coupled to a set of three 20 mm PVC hydraulic connectors to simulate the handle and sleeve of the arthroscope. The camera has a resolution of 1280 x 720 pixels and is equipped with six built-in white LED lamps, simulating and eliminating the need to use an additional light source. The knee model was developed using a PVC pipe fixed on a wooden support, to which synthetic femur and tibia models were affixed. Four three-centimeter diameter holes, compatible with the standard arthroscopic portals, were made in the body of the PVC pipe. For the menisci, a model was made out of modeling clay (Corfix®), until the anatomical structures were close to the real ones. The model consists of both menisci and the intercondylar eminence, simulating the proximal tibial articular surface. The model made out of modeling clay was the basis for the production of a thin Crystal Polyester Resin mold. Using the resin mold, the meniscal models were made of Silicone Rubber Type II, widely used in industry and crafts. Results: A functional and reproducible simulator was obtained, consisting of a knee model and an arthroscopic camera. The simulator works adequately adapted to a TV, monitor or computer, and allows the simulation of diagnostic procedures, meniscectomy and meniscoplasty. Conclusion: It is possible to develop a knee arthroscopy simulator, with components available in local and electronic commerce, at a cost of approximately R$ 300.