Leaf gas exchange and water relations in two assai cultivars submitted to water-deficit

Author:

Navegantes Patricia Cardoso Andrade1ORCID,Lopes Filho Wagner Romulo Lima1ORCID,Rodrigues Flávio Henrique Santos1ORCID,Monteiro Gabriel Gustavo Tavares Nunes1ORCID,Chaves Rosane Patrícia Ferreira2ORCID,Oliveira Neto Candido Ferreira1ORCID,Cunha Roberto Lisboa2ORCID,Pinheiro Hugo Alves1ORCID

Affiliation:

1. Universidade Federal Rural da Amazônia, Brazil

2. Embrapa Amazônia Oriental, Brazil

Abstract

Abstract: Assai (Euterpe oleracea Mart.) cultivars BRS-Pará (BRS-PA) and BRS-Pai d’Égua (BRS-PDE) were selected for cultivation in upland regions of the Amazon. Given these cultivars were developed from different progenitors, we postulated that they differ regarding water-deficit tolerance. To test this hypothesis, plants of both cultivars were evaluated under well-watered (control) and water-deficit conditions (pre-dawn leaf water potential of – 2.33 MPa). Relative to control, the water-deficit decreased net CO2 assimilation rate (A) and transpiration by 82% and 86% in both cultivars, while the stomatal conductance (gs) was reduced by 93% and 87% in stressed plants of BRS-PDE and BRS-PA. The water-deficit improved instantaneous water-use efficiency by 43% in both cultivars, while intrinsic water-use efficiency (A/gs) increased by 193% and 33% in BRS-PDE and BRS-PA. The water-deficit induced 44% increase in foliar proline and 27% decrease in soluble carbohydrates in both cultivars, while foliar sucrose decreased by 53% in BRS-PA and 16% in BRS-PDE in relation to control. The relative water content in stressed plants of both cultivars was decreased by 8.5% in relation to control. In conclusion, the more efficient stomatal opening control and higher A/gs in BRS-PDE indicate this cultivar better copes with drought than BRS-PA.

Publisher

FapUNIFESP (SciELO)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3