Uso de deep learning para a construção de um modelo de recuperação da informação aplicado para o setor de mineração no Brasil

Author:

Falcão Luander Cipriano de Jesus1ORCID,Lopes Brenner1ORCID,Souza Renato Rocha1ORCID,Barbosa Ricardo Rodrigues1ORCID

Affiliation:

1. Universidade Federal de Minas Gerais, Brasil

Abstract

Resumo Diante do crescimento exponencial de dados e informações, proporcionado por sensores e mídias sociais, um ecossistema composto por novas infraestruturas de armazenamento e processamento, denominado Big Data, foi desenvolvido. Todo esse desenvolvimento redundou em uma nova área do conhecimento, denominada Ciência de Dados. Apesar de haver um ecossistema e uma área do conhecimento para tratar esse bloco massivo de dados e informação, o incomodo da superabundância de dados ainda permanece, e se torna mais expressivo quando as empresas tomam consciência que podem usar zetabytes de dados e informações para direcionarem a estratégia e as operações. Baseado nisso, essa pesquisa buscou desenvolver um método para resumir as notícias do setor de mineração do Brasil, identificando o efeito da similaridade semântica na análise, possibilitando a recuperação da informação e uso em processos de compreensão do setor. Nesse método foi aplicado o transformer BERTSUM para sumarizar as notícias, e após sumarizadas o transformer BERT foi aplicado para medir a similaridade entre as notícias. O método permitiu reduzir em 75% todo o bloco de texto, retirar notícias com o mesmo teor semântico, e deduzir que há um padrão no discurso das notícias relacionadas ao setor de mineração.

Publisher

FapUNIFESP (SciELO)

Reference53 articles.

1. Performance study on extractive text summarization using BERT models;ABDEL-SALAM Shehab;Information,2022

2. Enhancing unsupervised neural networks based text summarization with word embedding and ensemble learning;ALAMI Nabil;Expert Systems with Applications,2019

3. Incorporating big data within retail organizations: a case study approach;AVERSA Joseph;Journal of Retailing and Consumer Services,2021

4. Models and practices in urban data science at scale;BALDUINI Marco;Big Data Research,2019

5. On the use of summarization and transformer architectures for profiling résumés;BONDIELLI Alessandro;Expert Systems with Applications,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3