Use of mechanistic-empirical method of pavement design for performance sensitivity analysis to asphalt pavement fatigue

Author:

Silva Natalia Assunção Brasil1ORCID,Silva Taciano Oliveira da2ORCID,Pitanga Heraldo Nunes3ORCID,Marques Geraldo Luciano de Oliveira3ORCID

Affiliation:

1. Universidade Federal de São João del-Rei, Brasil

2. Universidade Federal de Viçosa, Brasil

3. Universidade Federal de Juiz de Fora, Brazil

Abstract

ABSTRACT In the new Brazilian mechanistic-empirical design method of asphalt pavements, MeDiNa, the characterization of permanent deformation (PD) for the selection of soils and gravel is based on tests performed with at least 150,000 loading cycles for each of the nine specimens indicated in the DNIT standard. Despite providing information about the material behavior under a wide range of testing conditions, the experimental program related to these PD characterizations is time consuming and it is believed that it can be optimized. This paper evaluates the influence of the number of loading cycle applications on the characterization of the materials. For this purpose, seven materials were analyzed at their optimum moisture content (OMC) and one of them was also compacted in a condition above the OMC, in a total of eight data sets. Statistical regression analyzes were performed to identify the parameters of the predictive model for different numbers of cycles and the PD predictions for the different materials were compared. From these results, simulations were performed in the MeDiNa software to predict the performance of the materials. Four different N values were evaluated, considering 150,000 cycles as reference: discarding the 500 first cycles, but considering the PD accumulated in that interval; discarding the 500 first cycles and considering the PD accumulated in that interval; final N of 80,000; and final N of 100,000. For the analyzed materials, no significant differences were observed in the PD prediction, even considering tests with 50,000 or 70,000 cycles less than the 150,000 cycles required in the standard. This indicates that, although characterization is recommended following standardized procedures, the experimental program of the current PD standard can possibly be significantly optimized by reducing the number of cycles applied to materials in laboratory tests. This possibility must be analyzed for each material.

Publisher

FapUNIFESP (SciELO)

Subject

General Physics and Astronomy,General Materials Science,General Chemistry

Reference40 articles.

1. A review of top-down craking in asphalt pavements: Causes, models, experimental tools and future challenges;CANESTRARI F;Journal of Transportation Engineering,2020

2. The effect of axle load spctra from AASHTO method on flexible pavement performance;SANTOS T.A;Acta Scientiarum. Technology,2019

3. Manual de pavimentação,2006

4. Mecânica dos pavimentos;MEDINA J,2015

5. Mechanistic-empirical pavement design guide: features and distinctive elements;DIAZ MARTINEZ M;Revista la construcción,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3