Effects of erosive challenge on the morphology and surface properties of luting cements

Author:

GONDIM Brenna Louise Cavalcanti1,MEDEIROS Isabella Cavalcante1,COSTA Bruna Palmeira1,CARLO Hugo Lemes1,SANTOS Rogério Lacerda dos1,CARVALHO Fabíola Galbiatti de1

Affiliation:

1. Universidade Federal da Paraíba, Brasil

Abstract

Abstract Introduction Few studies investigated the surface properties of luting cements after erosive challenge. Objective To evaluate the surface roughness (Ra), Vickers hardness (VHN) and morphology of 4 luting cements after erosive challenge. Material and method Twenty specimens of each cement were prepared (4×2mm) and divided into experimental (erosive challenge) and control (artificial saliva) groups (n=10): Rely X U200 (U200); Rely X ARC (ARC); Ketac Cem Easy Mix (Ketac) and Zinc phosphate (ZnP). The erosive challenge was performed by four daily erosive cycles (90s) in a cola drink and 2 h in artificial saliva over 7 days. Ra and VHN readings were performed before and after erosion. The percentage of hardness loss (%VHN) was obtained after erosion. The surface morphology was analyzed by scanning electron microscopy (SEM). ANOVA, Tukey and Student-T tests were used (α=0.05). Result After erosion, all luting cements had increase in Ra values and U200 and ZnP groups had the highest %VHN. After saliva immersion, only U200 and ZnP groups had significant increases in Ra values and there were no significant differences among the groups in %VHN. SEM analysis showed that Ketac and ZnP groups had rough and porous surfaces, and U200 group had higher resin matrix degradation than ARC group. Conclusion Erosive challenge with a cola drink affected the surface properties of all luting cements.

Publisher

FapUNIFESP (SciELO)

Subject

General Medicine

Reference22 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In Vitro Effect of Acidic Challenges on the Physical Properties of Dental Prosthesis Artificial Teeth;Pesquisa Brasileira em Odontopediatria e Clínica Integrada;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3