Physicochemical properties and sensory acceptability of beetroot chips pre-treated by osmotic dehydration and ultrasound

Author:

Peters Ana Paula1,Tullio Lindamir Tomczak1,Lima Rafael Francisco de1,Carvalho Carlos Brian Oliveira de2,Barros Zilmar Meireles Pimenta2,Fraga Neta Eunice2,Frizon Cátia Nara Tobaldini1,Ávila Suelen1ORCID,Azoubel Patrícia Moreira2,Anjos Mônica de Caldas Rosa dos1,Ferreira Sila Mary Rodrigues1ORCID

Affiliation:

1. Universidade Federal do Paraná, Brasil

2. Universidade Federal de Pernambuco, Brasil

Abstract

Abstract Red beet (or beetroot) is highly nutritious and can be preserved by drying, in order to avoid wastage, to take advantage of crop surpluses, and to add value during the off-season. The objective of this study was to evaluate the effects of osmotic dehydration (OD) and ultrasound (US) pre-treatments on the nutritional quality and sensory characteristics of dried beetroot chips. The kinetics of moisture loss during OD and US were predicted by fitting the experimental data with thin-layer models. The physicochemical parameters (moisture, protein, lipid, carbohydrate, energy, ash, sodium and nitrate) and sensory properties (affective preference-ordering and acceptance test) were determined. Correlations between the treatments and the sensory acceptability evaluated by consumer’s perceptions were performed by applying unsupervised chemometric techniques (Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA)). The two-term exponential model provided the best fit for the experimental drying data. The US treatment promoted a higher drying rate and lower lipid, ash and energy values, while the OD process resulted in higher ash and sodium values. Multivariate analysis revealed that the US and OD treatments improved the sensory properties of the beetroot chips. The US was more efficient pre-treatment for producing beet chips due to its leads a significant reduction on drying time and intermediate level of sensory preference.

Publisher

FapUNIFESP (SciELO)

Subject

Food Science

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3