Artificial intelligence to predict bed bath time in Intensive Care Units

Author:

Toledo Luana Vieira1ORCID,Bhering Leonardo Lopes1ORCID,Ercole Flávia Falci2ORCID

Affiliation:

1. Universidade Federal de Viçosa, Brazil

2. Universidade Federal de Minas Gerais, Brazil

Abstract

ABSTRACT Objectives: to assess the predictive performance of different artificial intelligence algorithms to estimate bed bath execution time in critically ill patients. Methods: a methodological study, which used artificial intelligence algorithms to predict bed bath time in critically ill patients. The results of multiple regression models, multilayer perceptron neural networks and radial basis function, decision tree and random forest were analyzed. Results: among the models assessed, the neural network model with a radial basis function, containing 13 neurons in the hidden layer, presented the best predictive performance to estimate the bed bath execution time. In data validation, the squared correlation between the predicted values and the original values was 62.3%. Conclusions: the neural network model with radial basis function showed better predictive performance to estimate bed bath execution time in critically ill patients.

Publisher

FapUNIFESP (SciELO)

Reference27 articles.

1. Artificial Intelligence and society: advances and risks;Sichman JS.;Estud Av,2021

2. Artificial intelligence: essentials for nursing;McGrow K.;Nurs,2019

3. Predicted influences of artificial intelligence on nursing education: scoping review;Buchanan C;JMIR Nurs,2021

4. Predicting unplanned medical visits among patients with diabetes: translation from machine learning to clinical implementation;Selya A;BMC Med Inform Decis Mak,2021

5. Transforming clinical data into wisdom: artificial intelligence implications for nurse leaders;Cato KD;Nurs Manage,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3