Green method by diffuse reflectance infrared spectroscopy and spectral region selection for the quantification of sulphamethoxazole and trimethoprim in pharmaceutical formulations

Author:

Silva Fabiana E.B. da1,Flores Érico M.M.2,Parisotto Graciele3,Müller Edson I.3,Ferrão Marco F.4

Affiliation:

1. Universidade Federal do Pampa, Brasil

2. Universidade Federal de Santa Maria, Brasil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Brasil

3. Universidade Federal de Santa Maria, Brasil

4. Universidade Federal do Rio Grande do Sul, Brasil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Brasil

Abstract

An alternative method for the quantification of sulphametoxazole (SMZ) and trimethoprim (TMP) using diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) and partial least square regression (PLS) was developed. Interval Partial Least Square (iPLS) and Synergy Partial Least Square (siPLS) were applied to select a spectral range that provided the lowest prediction error in comparison to the full-spectrum model. Fifteen commercial tablet formulations and forty-nine synthetic samples were used. The ranges of concentration considered were 400 to 900 mg g-1SMZ and 80 to 240 mg g-1 TMP. Spectral data were recorded between 600 and 4000 cm-1 with a 4 cm-1 resolution by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The proposed procedure was compared to high performance liquid chromatography (HPLC). The results obtained from the root mean square error of prediction (RMSEP), during the validation of the models for samples of sulphamethoxazole (SMZ) and trimethoprim (TMP) using siPLS, demonstrate that this approach is a valid technique for use in quantitative analysis of pharmaceutical formulations. The selected interval algorithm allowed building regression models with minor errors when compared to the full spectrum PLS model. A RMSEP of 13.03 mg g-1for SMZ and 4.88 mg g-1 for TMP was obtained after the selection the best spectral regions by siPLS.

Publisher

FapUNIFESP (SciELO)

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3