Assessing rainfall erosivity indices through synthetic precipitation series and artificial neural networks

Author:

CECILIO ROBERTO A.1,MOREIRA MICHEL C.2,PEZZOPANE JOSE EDUARDO M.1,PRUSKI FERNANDO F.3,FUKUNAGA DANILO C.1

Affiliation:

1. Universidade Federal do Espirito Santo, Brasil

2. Universidade Federal da Bahia, Brasil

3. Universidade Federal de Vicosa, Brasil

Abstract

The rainfall parameter that expresses the capacity to promote soil erosion is called rainfall erosivity (R), and is commonly represented by the indexes EI30 and KE>25. The calculations of these indexes requires pluviographical records, that are difficult to obtain in Brazil. This paper describes the use of synthetic rainfall series to compute EI30 and KE>25 in Espírito Santo State (Brazil). Artificial neural networks (ANNs) were also developed to spatially interpolate R values in Espírito Santo. EI30 and KE>25 indexes values were close to those calculated on a homogeneous area according to the similarity of rainfall distribution; indicating the applicability of the use of synthetic rainfall series to estimate the R factor. ANNs had a better performance than Inverse Distance Weighted and Kriging to spatially interpolate rainfall erosivity values in the State of Espírito Santo.

Publisher

FapUNIFESP (SciELO)

Subject

Multidisciplinary

Reference61 articles.

1. Interpolation techniques and associated software for environmental data;Akkala A;Environ Prog Sustainable Energy,2010

2. Estimation of local rainfall erosivity using artificial neural network;Alves Sobrinho T;R Ambiente & Água,2011

3. Mapping rainfall erosivity at a regional scale: a comparison of interpolation methods in the Ebro Basin (NE Spain);Angulo-Martínez M;Hydrol Earth Syst Sci,2009

4. Use of time series models for predicting monther erosivity in Lavras, MG;Aquino RF;R Bras Agromet,2008

5. Software for Generating Synthetic Series of Climatic Data;Baena LGN;Eng Agricult,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3