Probabilistic graphic models applied to identification of diseases

Author:

Sato Renato Cesar1,Sato Graziela Tiemy Kajita2

Affiliation:

1. Universidade Federal de São Paulo, Brazil

2. Centro Técnico Aeroespacial, Brazil

Abstract

ABSTRACT Decision-making is fundamental when making diagnosis or choosing treatment. The broad dissemination of computed systems and databases allows systematization of part of decisions through artificial intelligence. In this text, we present basic use of probabilistic graphic models as tools to analyze causality in health conditions. This method has been used to make diagnosis of Alzheimer´s disease, sleep apnea and heart diseases.

Publisher

FapUNIFESP (SciELO)

Subject

General Medicine

Reference13 articles.

1. Probabilistic graphical models: principles and techniques;Koller D,2009

2. Exploiting causal functional relationships in Bayesian network modelling for personalised healthcare;Velikova M;Int J Approx Reasoning,2014

3. Factor analysis for the adoption of nuclear technology in diagnosis and treatment of chronic diseases;Sato RC;einstein (São Paulo),2012

4. Encyclopaedia of occupational health and safety;Enderlein G,1998

5. Bayesian methods in biomedical data analysis;Sarkar IN,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3