Root abundance of maize in conventionally-tilled and zero-tilled soils of Argentina

Author:

Taboada Miguel Angel1,Alvarez Carina Rosa1

Affiliation:

1. Universidad de Buenos Aires, Argentina

Abstract

Maize root growth is negatively affected by compacted layers in the surface (e.g. agricultural traffic) and subsoil layers (e.g. claypans). Both kinds of soil mechanical impedances often coexist in maize fields, but the combined effects on root growth have seldom been studied. Soil physical properties and maize root abundance were determined in three different soils of the Rolling Pampa of Argentina, in conventionally-tilled (CT) and zero-tilled (ZT) fields cultivated with maize. In the soil with a light Bt horizon (loamy Typic Argiudoll, Chivilcoy site), induced plough pans were detected in CT plots at a depth of 0-0.12 m through significant increases in bulk density (1.15 to 1.27 Mg m-3) and cone (tip angle of 60 º) penetrometer resistance (7.18 to 9.37 MPa in summer from ZT to CT, respectively). This caused a reduction in maize root abundance of 40-80 % in CT compared to ZT plots below the induced pans. Two of the studied soils had hard-structured Bt horizons (clay pans), but in only one of them (silty clay loam Abruptic Argiudoll, Villa Lía site) the expected penetrometer resistance increases (up to 9 MPa) were observed with depth. In the other clay pan soil (silty clay loam Vertic Argiudoll, Pérez Millán site), penetrometer resistance did not increase with depth but reached 14.5 MPa at 0.075 and 0.2 m depth in CT and ZT plots, respectively. However, maize root abundance was stratified in the first 0.2 m at the Villa Lía and Pérez Millán sites. There, the hard Bt horizons did not represent an absolute but a relative mechanical impedance to maize roots, by the observed root clumping through desiccation cracks.

Publisher

FapUNIFESP (SciELO)

Subject

Soil Science,Agronomy and Crop Science

Reference33 articles.

1. Spatial distribution of roots and water uptake of maize (Zea mays L.) as affected by soil structure;AMATO M.;Crop Sci.,2002

2. Light tractor traffic frequency on soil compaction in the Rolling Pampa region of Argentina;BOTTA G.F.;Soil Till. Res.,2006

3. Soil structure assessment;BURKE W.,1986

4. Soil physics with basic;CAMPBELL G.S.,1985

5. Factors and indices regarding excessive compactness of agricultural soils;CANARACHE A.;Soil Till. Res.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3