Simulating Weather Events with a Linked Atmosphere-Hydrology Model

Author:

Pereira Fábio Farias1ORCID,Uvo Cintia Bertacchi2ORCID

Affiliation:

1. Universidade Federal de Alagoas, Brasil

2. Universidade de Lund, Suécia

Abstract

Abstract This study aims at assess the importance of a conceptual representation of hydrological processes when modelling atmospheric circulation. It compares results from a regional atmospheric model that interprets land surface hydrological processes based on parameterizations with results from a two-way coupled atmosphere-hydrological model that has a process-based approach to the land surface hydrological cycle. These numerical models were applied to a region covering the Rio Grande basin, Brazil. The same input data, initial and boundary conditions were used on a 31-day simulation period. Results obtained from these simulations were compared to visible satellite images and gauging rainfall stations for three case studies that included a cold front, deep convective clouds and stable atmospheric conditions. Both models could reproduce regional patterns of air circulation and rainfall influenced by the orography of the basin. However, atmospheric processes driven by spatial gradients of land surface temperature or local surface heating were spatially better represented by the atmospheric-hydrological modelling system rather than the regional atmospheric model. Since areas characterized by spatial gradients of land surface temperature and local surface heating were closely associated with convergent air flows near land surface and strong vertical motion in the mid troposphere, this finding enhanced the role of a good representation of land surface hydrological processes for a better modelling the atmospheric dynamics.

Publisher

FapUNIFESP (SciELO)

Subject

Atmospheric Science

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3