Analyses of Shallow Convection over the Amazon Coastal Region Using Satellite Images, Data Observations and Modeling

Author:

Pires Luciana Bassi Marinho1ORCID,Suselj Kay2,Rossato Luciana3,Teixeira João4

Affiliation:

1. World Environmental Conservancy, USA

2. California Institute of Technology, USA

3. Polytechnic University of Catalonia, Spain

4. California Institute of Technology, USA; University of California, USA

Abstract

Abstract The Belem region of the state of Para, which is located in northern of Brazil and part of the Amazon biome is characterized by high temperatures, strong convection, unstable air conditions and high humidity favoring the formation of convective clouds. Shallow convection and deep convection are among the main components of the local energy balance. Typically a deep convection over the continents is preceded by a shallow convection. An analysis of the performance of the Jet Propulsion Laboratory / National Aeronautics and Space Administration (JPL/NASA) model of shallow convection parameterization in a framework of the single column model (SCM), in relation to the cluster of cumulus clouds formed in the coastal region of the Amazon forest due to squall lines, is provided. To achieve this purpose enhanced satellite images and infrared images from channels 2 and 4 from the GOES-12 satellite, and data obtained by the “Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement)” - CHUVA - campaign, during the month of June of 2011, were used. During that period, clusters of cumulus clouds penetrated the interior of the Amazon, causing heavy rains. Results demonstrated that the parameterizations performed well in the case where only a core of clouds was observed, such as at 18:00h on 14 June. This period of the day also presents the smallest bias and root mean square error (rmse) values for the relative humidity. For the potential temperature the smallest value of bias is at 12:00h on June 7th (0.18 K), the largest one is on June 11th (-2.32 K) and the rmse ranges from 0.59 to 2.99 K.

Publisher

FapUNIFESP (SciELO)

Subject

Atmospheric Science

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3