Active lifestyle enhances protein expression profile in subjects with Lewy body pathology

Author:

Real Caroline Cristiano1ORCID,Suemoto Cláudia Kimie2ORCID,Binda Karina Henrique2ORCID,Grinberg Lea Tenenholz3ORCID,Pasqualucci Carlos Augusto2ORCID,Jacob Filho Wilson2ORCID,Ferretti-Rebustini Renata Eloah de Lucena2ORCID,Nitrini Ricardo2ORCID,Leite Renata Elaine Paraizo2ORCID,Britto Luiz Roberto de2ORCID

Affiliation:

1. Universidade de São Paulo, Brazil; Universidade de São Paulo, Brazil

2. Universidade de São Paulo, Brazil

3. University of California San Francisco, United States of America; Universidade de São Paulo, Brazil

Abstract

ABSTRACT. Clinical trials of the effects of physical activity have reported improvements in symptoms and quality of life in patients with Parkinson's disease (PD). Additionally, morphological brain changes after exercising were reported in PD animal models. However, these lifestyle-related changes were not evaluated in postmortem brain tissue. Objective: We aimed to evaluate, by immunohistochemistry, astrocytes, tyrosine hydroxylase (TH) and structural proteins expression (neurofilaments and microtubules — MAP2) changes in postmortem brain samples of individuals with Lewy body pathology. Methods: Braak PD stage≥III samples, classified by neuropathology analysis, from The Biobank for Aging Studies were classified into active (n=12) and non-active (n=12) groups, according to physical activity lifestyle, and paired by age, sex and Braak staging. Substantia nigra and basal ganglia were evaluated. Results: Groups were not different in terms of age or gender and had similar PD neuropathological burden (p=1.00). We observed higher TH expression in the active group in the substantia nigra and the basal ganglia (p=0.04). Astrocytes was greater in the non-active subjects in the midbrain (p=0.03) and basal ganglia (p=0.0004). MAP2 levels were higher for non-active participants in the basal ganglia (p=0.003) and similar between groups in the substantia nigra (p=0.46). Neurofilament levels for non-active participants were higher in the substantia nigra (p=0.006) but not in the basal ganglia (p=0.24). Conclusion: Active lifestyle seems to promote positive effects on brain by maintaining dopamine synthesis and structural protein expression in the nigrostriatal system and decrease astrogliosis in subjects with the same PD neuropathology burden.

Publisher

FapUNIFESP (SciELO)

Subject

Cognitive Neuroscience,Geriatrics and Gerontology,Clinical Neurology,Neurology,Sensory Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3