Affiliation:
1. Universidade Federal de São Paulo, Brasil
2. Universidade Federal de São Paulo
Abstract
Over the last 50 years deep hypothermia (23(0) C) has demonstrated to be an excellent neuroprotective agent in cerebral ischemic injury. Mild hypothermia (31-33(0) C) has proven to have the same neuroprotective properties without the detrimental effects of deep hypothermia. Mechanisms of injury that are exaggerated by moderate hyperthermia and ameliorated by hypothermia include, reduction of oxygen radical production, with peroxidase damage to lipids, proteins and DNA, microglial activation and ischemic depolarization, decrease in cerebral metabolic demand for oxygen and reduction of glycerin and excitatory amino acid (EAA) release. Studies have demonstrated that inflammation potentiates cerebral ischemic injury and that hypothermia can reduce neutrophil infiltration in ischemic regions. To further elucidate the mechanisms by which mild hypothermia produces neuroprotection in ischemia by attenuating the inflammatory response, we provoked inflammatory reaction, in brains of rats, dropping a substance that provokes a heavy inflammatory reaction. Two groups of ten animals underwent the same surgical procedure: the skull bone was partially removed, the duramater was opened and an inflammatory substance (5% carrageenin) was topically dropped. The scalp was sutured and, for the group that underwent neuroprotection, an ice bag was placed covering the entire skull surface, in order to maintain the brain temperature between 29,5-31(0) C during 120 minutes. After three days the animals were sacrificed and their brains were examined. The group protected by hypothermia demonstrated a remarkable reduction of polymorphonuclear leukocytes (PMNL) infiltration, indicating that mild hypothermia can have neuroprotective effects by reducing the inflammatory reaction.
Subject
Neurology,Clinical Neurology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献