EARLY STAGES OF COLORECTAL CANCER CHARACTERIZATION BY AUTOFLUORESCENCE 3D MICROSCOPY: A PRELIMINARY STUDY

Author:

ERBES Luciana Ariadna1ORCID,CASCO Víctor Hugo1ORCID,ADUR Javier1ORCID

Affiliation:

1. Universidad Nacional de Entre Ríos, Argentina; Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática, Argentina

Abstract

ABSTRACT Background: Colorectal cancer is one of the most prevalent pathologies worldwide whose prognosis is linked to early detection. Colonoscopy is the gold standard for screening, and diagnosis is usually made histologically from biopsies. Aiming to reduce the inspection and diagnostic time as well as the biopsies and resources involved, other techniques are being promoted to conduct accurate in vivo colonoscopy assessments. Optical biopsy aims to detect normal and neoplastic tissues analysing the autofluorescence spectrum based on the changes in the distribution and concentration of autofluorescent molecules caused by colorectal cancer. Therefore, the autofluorescence contribution analysed by image processing techniques could be an approach to a faster characterization of the target tissue. Objective: Quantify intensity parameters through digital processing of two data sets of three-dimensional widefield autofluorescence microscopy images, acquired by fresh colon tissue samples from a colorectal cancer murine model. Additionally, analyse the autofluorescence data to provide a characterization over a volume of approximately 50 µm of the colon mucosa for each image, at second (2nd), fourth (4th) and eighth (8th) weeks after colorectal cancer induction. Methods: Development of a colorectal cancer murine model using azoxymethane/dextran sodium sulphate induction, and data sets acquisition of Z-stack images by widefield autofluorescence microscopy, from control and colorectal cancer induced animals. Pre-processing steps of intensity value adjustments followed by quantification and characterization procedures using image processing workflow automation by Fiji’s macros, and statistical data analysis. Results: The effectiveness of the colorectal cancer induction model was corroborated by a histological assessment to correlate and validate the link between histological and autofluorescence changes. The image digital processing methodology proposed was then performed on the three-dimensional images from control mice and from the 2nd, 4th, and 8th weeks after colorectal cancer chemical induction, for each data set. Statistical analyses found significant differences in the mean, standard deviation, and minimum parameters between control samples and those of the 2nd week after induction with respect to the 4th week of the first experimental study. This suggests that the characteristics of colorectal cancer can be detected after the 2nd week post-induction. Conclusion: The use of autofluorescence still exhibits levels of variability that prevent greater systematization of the data obtained during the progression of colorectal cancer. However, these preliminary outcomes could be considered an approach to the three-dimensional characterization of the autofluorescence of colorectal tissue, describing the autofluorescence features of samples coming from dysplasia to colorectal cancer.

Publisher

FapUNIFESP (SciELO)

Reference34 articles.

1. Animal models for colorectal cancer;De-Souza AS;Arq Bras Cir Dig,2018

2. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries;Sung H;CA: A Cancer J Clin,2021

3. Colorectal cancer;Brenner H;The Lancet,2014

4. An Insight in Biomarkers for Colorectal Cancer;Prasad M;J Gastroenterol Liver Dis,2018

5. Non-polypoid colorectal neoplasms: Classification, therapy and follow-up;Facciorusso A;World J Gastroenterol,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3