Evaluation of the throughfall and stemflow nutrient contents in mixed and pure plantations of Acacia mangium, Pseudosamenea guachapele and Eucalyptus grandis

Author:

Balieiro Fabiano de Carvalho1,Franco Avílio Antônio2,Fontes Renildes Lúcio Ferreira3,Dias Luiz Eduardo3,Campello Eduardo Francia Carneiro2,Faria Sérgio Miana de2

Affiliation:

1. Embrapa Solos

2. Jardim Botânico

3. Embrapa Agrobiologia

Abstract

The interception of the rainfall by the forest canopy has great relevance to the nutrient geochemistry cycle in low fertility tropical soils under native or cultivated forests. However, little is known about the modification of the rainfall water quality and hydrological balance after interception by the canopies of eucalyptus under pure and mixed plantations with leguminous species, in Brazil. Samples of rainfall (RF), throughfall (TF) and stemflow (SF) were collected and analyzed in pure plantations of mangium (nitrogen fixing tree -NFT), guachapele (NFT) and eucalyptus (non-nitrogen fixing tree -NNFT) and in a mixed stand of guachapele and eucalyptus in Seropédica, State of Rio de Janeiro, Brazil. Nine stemflow collectors (in selected trees) and nine pluviometers were randomly disposed under each stand and three pluviometers were used to measure the incident rainfall during 5.5 months. Mangium conveyed 33.4% of the total rainfall for its stem. An estimative based on corrections for the average annual precipitation (1213 mm) indicated that the rainfall's contribution to the nutrient input (kg ha-1) was about 8.42; 0.95; 19.04; 6.74; 4.72 and 8.71 kg ha-1 of N-NH4+, P, K+, Ca+2, Mg+2 and Na+, respectively. Throughfall provided the largest contributions compared to the stemflow nutrient input. The largest inputs of N-NH4+ (15.03 kg ha-1) and K+ (179.43 kg ha-1) were observed under the guachapele crown. Large amounts of Na+ denote a high influence of the sea. Mangium was the most adapted species to water competitiveness. Comparatively to pure stand of eucalyptus, the mixed plantation intensifies the N, Ca and Mg leaching by the canopy, while the inputs of K and P were lower under these plantations.

Publisher

FapUNIFESP (SciELO)

Subject

Forestry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3