As Simetrias de Lie de um Pião

Author:

Basquerotto Cláudio H. C. Costa1,Righetto Edison1,Silva Samuel da1

Affiliation:

1. Universidade Estadual Paulista, Brasil

Abstract

A existência de simetrias em equações diferenciais pode gerar transformações em variáveis dependentes e independentes que facilitam a integração destas equações. Em especial, Sophus Lie desenvolveu no século XIX uma forma de extração de simetrias que podem ser usadas efetivamente para revelar as integrais primeiras, ou seja, as constantes de movimento, que muitas vezes podem estar escondidas. Estes invariantes podem em algumas situações ser identificados pelo teorema de Noether ou a partir de manipulações das próprias equações com transformações de Lie. Nos cursos iniciais de mecânica clássica, apesar de todo o formalismo em cima dos teoremas de conservação de energia e momento linear/angular, a relação disto com a existência de possíveis simetrias de Lie não é destacada de forma clara e objetiva. Neste sentido, o presente artigo busca apresentar uma introdução às simetrias de Lie usando uma linguagem acessível para um aluno de graduação de física, matemática ou engenharia com domínio básico em fundamentos de cálculo com várias variáveis. Para ilustrar a abordagem, considera-se um problema clássico de mecânica considerando um pião em regime de movimento com precessão estacionária. A partir das equações de movimento obtidas, as simetrias de Lie são identificadas e usadas na transformação para a redução da ordem. As integrais primeiras são obtidas a partir deste resultado com o Teorema de Noether, mostrando que neste exemplo e condição as simetrias de Lie também são simetrias de Noether. Por fim, a resolução das equações de movimento podem ser feitas usando funções elípticas de Jacobi para a obtenção dos ângulos de precessão, nutação e spin nas condições apresentadas.

Publisher

FapUNIFESP (SciELO)

Subject

General Physics and Astronomy,Education

Reference54 articles.

1. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications;Roychowdhury J.,2001

2. Computer Physics Communications;Schunck N.,2012

3. Chaos, Solitons and Fractals;Akbulut A.,2017

4. Journal of Mathematical Analysis and Applications;Olver P.J.,2007

5. Symmetry Analysis of Differential Equations: An Introduction;Arrigo D.J.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3