Abstract
Programas de análise de consistência de dados são utilizados, normalmente, por redes de estações agrometeorológicas para controle de qualidade, para identificar dados com problemas e fornecer estimativas consistentes, com base em dados de outras estações próximas. Os sistemas modernos de controle de qualidade de rede de estações meteorológicas requerem porém maior conhecimento da variabilidade espacial e temporal dos dados meteorológicos diários regionais, para serem utilizados nos sistemas matemáticos de interpolação de dados necessários a fim de identificar dados suspeitos ou na estimativa de dados perdidos. O objetivo deste trabalho foi quantificar a variabilidade espacial e temporal de dados diários de temperatura do ar máxima, média e mínima e de precipitação pluvial no Estado de São Paulo, para servir de subsídio ao desenvolvimento de sistema de controle de qualidade e de limites de intervalos de confiança. Foram utilizados dados de 19 estações agrometeorológicas do IAC, em um período total de 20 anos (1981/2000), sendo Campinas considerada a estação central. Análises de regressão mensais foram realizadas com base nos dados diários da estação central e cada uma das demais estações, considerando as respectivas distâncias lineares, que variaram de 0 a 436 km, nas quais foram obtidos valores de coeficientes de determinação (R²) e de erro-padrão de estimativa (SEE) para os elementos considerados. Pelos resultados, à medida que as distâncias aumentam, menores são os valores de R² e maiores os valores de SEE, seguindo diferentes funções, que variaram segundo o elemento meteorológico e a época do ano. Quanto à variabilidade temporal, os meses com maiores valores de SEE para temperaturas máximas e mínimas (TMAX e TMIN) foram os de primavera e inverno respectivamente. Considerando 150 km de distância, a TMAX indicou valores de SEE até de 3,0 °C e TMIN de até 2,3 °C. Para precipitação pluvial, observaram-se valores menores de SEE durante o inverno, de até 4 mm, e valores mais elevados, de até 15 mm, durante o verão. Pelas análises, os limites máximos de distâncias admitidos para explicar mais de 90% das variações dos elementos termopluviométricos entre locais foram para TMAX, 80 km (primavera-verão) e 90 km (outono-inverno); para TMIN são necessários 55 km para os meses de verão, 75 km para inverno-primavera e 90 km durante o outono. Para dados pluviométricos, as distâncias de até 12 km explicam 90% da variação para os meses de verão, até 20 km para os de primavera e outono e de até 27 km para os de inverno.
Subject
General Agricultural and Biological Sciences,Materials Science (miscellaneous)
Reference10 articles.
1. Application of geostatistics to evaluate partial weather station networks;ASHRAF M;Agricultural and Forest Meteorology,1997
2. Spatial and temporal variability of daily weather variables in sub-humid and semi-arid portions of the United States high plains;CAMARGO M.B.P.;Agricultural and Forest Meteorology,1999
3. Instruções agrícolas para as principais culturas econômicas;CAMARGO M.B.P.,1996
4. Quality and variability of long term climate data relative to agriculture;CARLSON R.E.;Agricultural and Forest Meteorology,1994
5. Handbook of agricultural meteorology;DECKER W.L.,1994
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献