Affiliation:
1. Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
2. Clínica de Reabilitação Neurofuncional Melissa Grigol, Brazil
Abstract
Abstract Introduction: The locomotor training with body weight support has been proposed as an alternative for the rehabilitation of people with spinal cord injury, in order to develop most of the residual potential of the body. Objective: To compare the levels of muscle activation of the main muscle involved in gait during body weight-supported treadmill training and body weight-supported overground training in incomplete spinal cord injured patients. Methods: It was a prospective cross-sectional study, in which 11 incomplete injured patients were submitted to two modalities of gait with body weight support, the first one on the treadmill (two different speeds: 1 and 4km/h), and the second one with the walker on fixed floor. The electromyographical acquisition was done in the rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL) and gluteus maximus (GM). Results: There was a greater muscle activation of all muscles analyzed in the treadmill training as compared to the over groundtraining, both at 4 km/h (RF: p=0.00), (VM: p=0.00), (VL: p=0.00) e (GM: p=0.00) and at 1km/h (RF: p=0.00), (VM: p=0.00), (VL: p=0.00) e (GM: p=0.00). When comparing the two modalities of treadmill training, at 4 and 1km/h, there was no statically significant difference between them (RF: p=0.36), (VM: p=1.00), (VL: p=1.00) e (GM: p=0.16). Conclusion: The gait training with body weight support is more effective in activating the muscles involved in the gait training on treadmill compared to overground training in patients with incomplete spinal cord injury.
Subject
Rehabilitation,Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation,Complementary and Manual Therapy
Reference32 articles.
1. Challenging Topics in Neuroanesthesia and Neurocritical Care;Luk KHK,2017
2. Spinal cord injury. Key facts,2013
3. Annual Statistical Report for the Spinal Cord Injury Model,2014
4. Systems Public Version,2014
5. Spinal Cord Injury Time to Move?;Rossignol S;J. Neurosci,2007
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献