High molecular diversity of the fungus Guignardia citricarpa and Guignardia mangiferae and new primers for the diagnosis of the citrus black spot

Author:

Stringari Danyelle1,Glienke Chirlei1,Christo Daniel de1,Maccheroni Jr. Walter2,Azevedo João Lucio de2

Affiliation:

1. Universidade Federal do Paraná, Brasil

2. Universidade de São Paulo, Brasil

Abstract

RAPD markers were used to investigate the distribution of genetic variability among a group of Guignardia citricarpa, G. mangiferae, and Phyllosticta spinarum isolates obtained from several hosts in Brazil, Argentina, Mexico, Costa Rica, Thailand, Japan, United States and South Africa. Pathogenic isolates G. citricarpa Kiely (anamorph form P. citricarpa McAlp Van Der Aa) are the etiological agent of the Citrus Black Spot (CBS), a disease that affects several citric plants and causes substantial injuries to the appearance of their fruits, thus preventing their export. Several previous studies have demonstrated the existence of an endophytic species with high morphological similarity to the causal agent of CBS that could remain latent in the same hosts. Consequently, the identification of the plants and fruits free from the causal agent of the disease is severely hampered. The RAPD analysis showed a clear discrimination among the pathogenic isolates of G. citricarpa and endophytic isolates (G. mangiferae and P. spinarum). In addition, a Principal Coordinate Analysis (PCO) based on a matrix of genetic similarity estimated by the RAPD markers showed four clusters, irrespective of their host or geographical origin. An Analysis of Molecular Variance (AMOVA) indicated that 62.8% of the genetic variation was found between the populations (G. citricarpa, G. mangiferae, P. spinarum and Phyllosticta sp.). Substantial variation was found in the populations (37.2%). Exclusive RAPD markers of isolates of G. citricarpa were cloned, sequenced and used to obtain SCARS (Sequence Characterized Amplified Regions), which allowed the development of new specific primers for the identification of G. citricarpa PCR (Polymerase Chain Reaction) analysis using a pair of primers specific to pathogenic isolates corroborating the groupings obtained by the RAPD markers, underscoring its efficiency in the identification of the causal agent of CBS.

Publisher

FapUNIFESP (SciELO)

Subject

Multidisciplinary

Reference26 articles.

1. Agrianual 2005: Anuário da Agricultura Brasileira,2005

2. Isolation of endophytic actinomycetes from roots and leaves of maize (Zea mays L.);Araújo J.;Braz. Arch. Biol. Technol,2000

3. Exercícios práticos de genética;Azevedo J.L.,1973

4. Molecular characterization of Paecilomyces fumoroseus (Deuteromycotina: Hyphomycetes) isolates;Azevedo A.C.S.;Scientia Agrícola,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3