Prediction of carcass rib eye area by ultrasound images in sheep using computer vision

Author:

Lima Júnior Francisco Albir1ORCID,Figueiredo Filho Luiz Antônio Silva2ORCID,Sousa Júnior Antônio de3ORCID,Silva Romuere Rodrigues Veloso e1ORCID,Barbosa Bruna Lima1ORCID,Vieira Rafaela de Brito1ORCID,Rocha Artur Oliveira4ORCID,Oliveira Tiago de Moura1ORCID,Sarmento José Lindenberg Rocha1ORCID

Affiliation:

1. Universidade Federal do Piauí (UFPI), Brasil

2. Instituto Federal de Educação, Ciência e Tecnologia do Maranhão (IFMA), Brasil

3. Universidade Federal do Piauí (UFPI),, Brasil

4. Purdue University, USA

Abstract

ABSTRACT: The present research created a tool to measure ultrasound images of the rib eye area in sheep. One hundred twenty-one ultrasound images of sheep were captured, with regions of interest segmented using the U-Net algorithm. The metrics adopted to evaluate automatic segmentations were Dicescore and intersection over union. Finally, a regression analysis was performed using the AdaBoost Regressor and Random Forest Regressor algorithms and the fit of the models was evaluated using the Mean Square Residuals, mean absolute error and coefficient of determination. The values obtained for the Dice metric were 0.94, and for Intersection over Union it was 0.89, demonstrating a high similarity between the actual and predicted values, ranging from 0 to 1. The values of Mean Quadratic Residuals, mean absolute error and coefficient The determination of the regressor models indicated the best fit for the Random Forest Regressor. The U-Net algorithm efficiently segmented ultrasound images of the Longissimus Dorsi muscle, with greater precision than the measurements performed by the specialist. This efficient segmentation allowed the standardization of rib eye area measurements and, consequently, the phenotyping of beef sheep on a large scale.

Publisher

FapUNIFESP (SciELO)

Reference24 articles.

1. Correcting Jaccard and other similarity indices for chance agreement in cluster analysis;ALBATINEH A. N.;Advances in Data Analysis and Classification,2011

2. Implementasi metode image Subtracting dan Metode Regionprops untuk Mendeteksi Jumlah Objek Berwarna RGB pada File Video;ARDHIANTO E.;Dinamik,2013

3. Optimizing the Dice Score and Jaccard Index for Medical Image Segmentation: Theory and Practice.;BERTELS J.;Springer,2019

4. Bagging predictors;BREIMAN L;Machine Learning,1996

5. Use of non-linear models to evaluate the sheep growth curve.;BORGES M. C. R.;Caderno De Ciências Agrárias,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3