Comparison of Normal, Logistic, Laplace, and Student’s t distributions for experimental error in the Bayesian description of dry matter accumulation in Allium sativum

Author:

Moura George Lucas Santana de1ORCID,Guzzo Felipe1ORCID,Cecon Paulo Roberto1ORCID,Martins Filho Sebastião1ORCID,Carneiro Antônio Policarpo Souza1ORCID,Nascimento Moysés1ORCID

Affiliation:

1. Universidade Federal de Viçosa (UFV), Brazil

Abstract

ABSTRACT: This study assessed distributions associated with Bayesian nonlinear modeling error in the description of total plant dry matteraccumulation (TDMA) of Allium sativumas a function of days after planting (DAP). According to the DIC criterion, Logistic and Gompertzmodels that use student’s t distribution error exhibited the highest DIC with logistic error distribution. In general, the difference of DIC in all the scenarios was not more than 5.The Bayes factor (BF) criterion showed no difference in the Logistic and Gompertzmodel fit when four distributions are used for the errors, where BF values do not exceed 2. Posterior distributions and the usual estimators of Logistic and Gompertz model parameters were similar even forvaried error distribution. In summary, there was no difference in the use of 4 distributions associated with the modeling error of garlic plant growth by the Bayes factor, whereby the results showed that alternating between error distributions significantly changes the number of Markov Chain Monte Carlo (MCMC) iterations.

Publisher

FapUNIFESP (SciELO)

Reference15 articles.

1. Modelos lineares generalizados e extensões;CORDEIRO G. M.,2008

2. Improved likelihood ratio statistics for exponential family nonlinear models.;CORDEIRO G. M.;Biometrika,1989

3. Bayesian Methods for Data Analysis;CARLIN B. P.,2008

4. Corrected maximum-likelihood estimation in a class of symmetric nonlinear regression models;CORDEIRO G.M.;Statistics & Probability Letters,2000

5. Bayesian analysis for nonlinear regression model under skewed errors, with application in growth curves.;DE LA CRUZ R.;Biometrical journal,,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3