Multivariate analysis and neural networks application to price forecasting in the Brazilian agricultural market

Author:

Pinheiro Carlos Alberto Orge1,Senna Valter de2

Affiliation:

1. Universidade do Estado da Bahia, Brazil

2. Faculdade de Tecnologia Senai Cimatec, Brasil

Abstract

ABSTRACT: The purpose of this study is to apply the methodology proposed by PINHEIRO & SENNA (2015) to a set of agricultural products traded in Brazil. The multivariate and nonlinear character of this methodology has shown to be suitable, as compared to the neural network model, since it allows for a better predictive performance. Results obtained in an out-of-sample period, by using the calculated error and statistical test, confirmed this statement. This study will be useful to farmers as price forecasting based on their tendency is relevant.

Publisher

FapUNIFESP (SciELO)

Subject

General Veterinary,Agronomy and Crop Science,Animal Science and Zoology

Reference22 articles.

1. Non-linearities in the relationship of agricultural futures prices.;BECKMANN J.;European Review of Agricultural Economics,2014

2. Tomada de decisão em futuros agropecuários com modelos de previsão de séries temporais.;BRESSAN A.A.;Revista de Administração Eletrônica,2004

3. Análise da volatilidade de preços de produtos agropecuários no Brasil.;CAMPOS K.C;Revista de Economia e Agronegócio,2007

4. CENTRO DE ESTUDOS AVANÇADOS EM ECONOMIA APLICADA (CEPEA).

5. Previsão do preço da soja: uma comparação entre os modelos ARIMA e redes neurais artificiais.;CERETTA P.S.;Informações Econômicas,2010

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3