Detection of change in vegetation cover using multi-spectral and multi-temporal information for district Sargodha, Pakistan

Author:

Ahmad Farooq1

Affiliation:

1. University of the Punjab Lahore, Pakistan

Abstract

Detection of change is the measure of the distinct data framework and thematic change information that can direct to more tangible insights into underlying process involving land cover and landuse changes. Monitoring the locations and distributions of land cover changes is important for establishing links between policy decisions, regulatory actions and subsequent landuse activities. Change detection is the process that helps in determining the changes associated with landuse and land cover properties with reference to geo-registered multi-temporal remote sensing information. It assists in identifying change between two or more dates that is uncharacterized of normal variation. After image to image registrations, the normalized difference vegetation index (NDVI), the transformed normalized difference vegetation index (TNDVI), the enhanced vegetation index (EVI) and the soil-adjusted vegetation index (SAVI) values were derived from Landsat ETM+ dataset and an image differencing algorithm was applied to detect changes. This paper presents an application of the use of multi-temporal Landsat ETM+ images and multi-spectral MODIS (Terra) EVI/NDVI time-series vegetation phenology metrics for the District Sargodha. The results can be utilized as a temporal land use change model for Punjab province of Pakistan to quantify the extent and nature of change and assist in future prediction studies. This will support environmental planning to develop sustainable landuse practices.

Publisher

FapUNIFESP (SciELO)

Reference64 articles.

1. Change detection of vegetation cover, using multi-temporal remote sensing data and GIS techniques;ADIA S. O.,2008

2. The use of remote sensing & geographical information systems to identify vegetation: The case of Dhofar Governorate (Oman);AL-AWADHI T.

3. Use of logistic regression for validation of maps of the spatial distribution of vegetation species derived from high spatial resolution hyperspectral remotely sensed data;ASPINALL R. J.;Ecological Modelling,2002

4. Considerations in collecting, processing, and analyzing high spatial resolution hyperspectral data for environmental investigations;ASPINALL R. J.;Journal of Geographical Systems,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3