Evaluating the performance of the OC5 algorithm of IFREMER for the highly turbid waters of Río de la Plata

Author:

Camiolo Martina Daniela1,Cozzolino Ezequiel1,Simionato Claudia Gloria2,Hozbor María Constanza1,Lasta Carlos Ángel1

Affiliation:

1. Instituto Nacional de Investigación y Desarrollo Pesquero, República Argentina

2. Centro de Investigaciones del Mar y la Atmósfera, Argentina

Abstract

Abstract Remote sensing provides a global vision of the oceans; validation is, however, an essential previous step. IFREMER developed the empirical algorithm OC5 for highly turbid (or type 2) waters and it performed well for the northwestern European shelf. The aim of this study was to evaluate the performance of this algorithm for the Río de la Plata estuary, utilizing in situ observations of chlorophyll-a and suspended matter. Our results show a low point-to-point correlation between in situ and remote observations for both variables. In addition, the root mean square log error (RMSE) exceeded 35% for both variables, indicating a poor performance of the OC5 algorithm. This might be related to the empirical nature of the algorithm, to the amount and distribution of the data used for the analysis, to the species that compose the phytoplankton of the region, to the presence of other optically active substances in the water, and to errors in the atmospheric corrections and/or to the spatial variability of the analyzed variables. In conclusion, our results confirm the need to develop regional algorithms which take into account the particular physical and biological characteristics of the area under study.

Publisher

FapUNIFESP (SciELO)

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3