Affiliation:
1. Universidade do Estado do Rio de Janeiro, Brasil
2. Universidade Federal do Rio de Janeiro, Brasil
Abstract
Defensive chemistry may be used against consumers and competitors by invasive species as a strategy for colonization and perpetuation in a new area. There are relatively few studies of negative chemical interactions between scleratinian corals. This study characterizes the secondary metabolites in the invasive corals Tubastraea tagusensis and T. coccinea and relates these to an in situ experiment using a submersible apparatus with Sep-Paks® cartridges to trap substances released by T. tagusensis directly from the sea-water. Colonies of Tubastraea spp were collected in Ilha Grande Bay, RJ, extracted with methanol (MeOH), and the extracts washed with hexane, dichloromethane (DCM) and methanol, and analyzed by GC/MS. Methyl stearate and methyl palmitate were the major components of the hexane and hexane:MeOH fractions, while cholesterol was the most abundant in the DCM and DCM:MeOH fractions from Tubastraea spp. The organic material retained in Sep-Paks® cartridges was tentatively identified as hydrocarbons. There was a significant difference between treatments and controls for 1-hexadecene, n-hexadecane and n-eicosane contents. The production of defensive substances by the invasive corals may be a threat to the benthic communities of the region, which include endemic species.
Reference78 articles.
1. Wax in coral mucus: Energy transfer from corals to reef fishes;BENSON A. A.;Limmol. Oceanogr.,1974
2. Marine natural products;BLUNT J. W.;Nat. Prod. Rep.,2007
3. Marine natural products;BLUNT J. W.;Nat. Prod. Rep.,2008
4. Marine natural products;BLUNT J. W.;Nat. Prod. Rep.,2009
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献