NADP-dependent isocitrate dehydrogenase of Astyanax scabripinnis (Pisces, Characidae) from three altitudes at Grande Stream, Campos do Jordão, SP

Author:

Munin F. S.1,Schwantes M. L.1,Schwantes A. R.1,Moreira-Filho O1

Affiliation:

1. Universidade Federal de São Carlos, Brazil

Abstract

Electrokinetic, thermic, and kinetic properties of products of NADP-dependent isocitrate dehydrogenase (IDHP; EC 1.1.1.42) loci of Astyanax scabripinnis (Pisces, Characidae) collected at three different altitudes (700 m, 1,800 m, and 1,920 m) of Grande Stream at Campos do Jordão, State of São Paulo, Brazil, were analyzed. Two IDHP bidirectionally divergent loci, a single skeletal muscle, the IDHP-A*, and a single liver IDHP-B*, both polymorphic, were detected in the three different altitude populations. The variant allele *128 at the IDHP-A* locus, had its highest frequency detected in the 1,920 m population (0.494). Among the nine variant alleles detected at the IDHP-B* locus (*37, *57, *69, *79, *85, *114, *119, *124, and *140), the *37 and 79 were detected only in 1,800 m population. Chi-square values showed that only the 700 m population is not in Hardy-Weinberg equilibrium for the IDHP-A* locus, while for the IDHP-B* locus, no population is. Homogeneity Chi² test indicated that the populations are significantly different in their A and B phenotype frequencies. Wright's FST mean value (0.036 and 0.32, IDHP-A* and IDHP-B*, respectively) was 0.178 for the three altitude populations which means that 82% of total genetic diversity was found among individuals of each one of the populations. Stability at environmental temperatures (16º to 21ºC), and apparent Km and Vmax values of each A-phenotype skeletal muscle crude extract suggest different roles of A-isoforms during the increased lipogenesis that occurs in fish at low temperatures.

Publisher

FapUNIFESP (SciELO)

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3