Abstract
O grande volume de variáveis coletadas em processos industriais impõe dificuldades ao controle e monitoramento de tais processos. A regressão PLS (partial least squares) vem sendo amplamente utilizada em procedimentos de seleção de variáveis por sua capacidade de operar com grande número de variáveis correlacionadas e afetadas por ruído. Este artigo propõe um método para identificar o melhor subconjunto de variáveis de processo para a predição das variáveis de resposta. Indicadores de importância das variáveis são desenvolvidos a partir de parâmetros da regressão PLS e guiam a eliminação das variáveis irrelevantes. Tais índices são então testados em termos de seu desempenho. Ao ser aplicado em cinco bancos de dados industriais, o método utilizando o índice recomendado reteve apenas 31% das variáveis originais e aumentou a acurácia de predição do conjunto de teste em 6%. O método proposto também superou a acurácia do método Stepwise, tradicionalmente utilizado em procedimentos de seleção com propósitos de predição.
Subject
Industrial and Manufacturing Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献