Um novo método para seleção de variáveis preditivas com base em índices de importância

Author:

Zimmer Juliano1,Anzanello Michel José1

Affiliation:

1. UFRS, Brasil

Abstract

O grande volume de variáveis coletadas em processos industriais impõe dificuldades ao controle e monitoramento de tais processos. A regressão PLS (partial least squares) vem sendo amplamente utilizada em procedimentos de seleção de variáveis por sua capacidade de operar com grande número de variáveis correlacionadas e afetadas por ruído. Este artigo propõe um método para identificar o melhor subconjunto de variáveis de processo para a predição das variáveis de resposta. Indicadores de importância das variáveis são desenvolvidos a partir de parâmetros da regressão PLS e guiam a eliminação das variáveis irrelevantes. Tais índices são então testados em termos de seu desempenho. Ao ser aplicado em cinco bancos de dados industriais, o método utilizando o índice recomendado reteve apenas 31% das variáveis originais e aumentou a acurácia de predição do conjunto de teste em 6%. O método proposto também superou a acurácia do método Stepwise, tradicionalmente utilizado em procedimentos de seleção com propósitos de predição.

Publisher

FapUNIFESP (SciELO)

Subject

Industrial and Manufacturing Engineering

Reference23 articles.

1. Variable selection in regression: a tutorial;ANDERSEN C. M.;Journal of Chemometrics,2010

2. Selecting the best variables for classifying production batches into two quality levels;ANZANELLO M. J.;Chemometrics Intelligent Laboratory Systems,2009

3. Multicriteria variable selection for classification of production batches;ANZANELLO M. J.;European Journal of Operational Research,2012

4. Genetic algorithms combined with discriminant analysis for key variable identification;CHIANG L. H.;Journal of Process Control,2004

5. Performance of some variable selection methods when multicollinearity is present;CHONG I.-G.;Chemometrics Intelligent Laboratory Systems,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3