Surface treatments of the zirconia-reinforced lithium disilicate ceramic in the adhesion to the resin cement

Author:

Aguilera Mirko A.R.1ORCID,Bortolazzo Américo C.1ORCID,Correr-Sobrinho Lourenço1ORCID,Consani Rafael L. X.1ORCID

Affiliation:

1. UNICAMP, Brazil

Abstract

Abstract This study verified the effect of surface treatments of the zirconia-reinforced lithium disilicate ceramic bonded to resin cement. Ceramic blocks were divided according to treatments (n=10): FA+SRX (Fluoric acid + silane RX), FA+MDP (Fluoric acid + MDP), FA+SCF+MDP (Fluoric acid + silane CF + MDP), FA+MEP (Fluoric acid + MEP), and MEP (Self-etch primer). Resin cement cylinders were made in the ceramic blocks, photoactivated with 1,200 mW/cm² for 40s, stored in water at 37°C for 24h, and evaluated by the microshear strength test, optical failure descriptive analysis (%), surface characterization (SEM) and contact angle (Goniometer). Other samples were submitted to 10,000 thermocycles between 5°C and 55°C. Bond strength data were submitted to two-way ANOVA and Tukey’s test. Contact angle to one-way ANOVA and Games-Howell's test (5%). At 24h, MEP showed higher bond strength, and FA+SRX the lower. FA+MDP and FA+SCF+MDP showed similar values and FA+MEP was intermediate. After thermocycling, FA+SCF+MDP, FA+MEP, and MEP showed higher values, and FA+SRX the lower while FA+MDP was intermediate. When the periods were compared, FA+MDP, FA+SCF+MDP, FA+MEP, and MEP showed higher values for 24h while FA+SRX was similar. SEM showed retentive surface and crystal exposure when treated with FA+SCF+MDP. The less retentive surface was obtained with MEP, and the other treatments promoted intermediate irregularities. In conclusion, surface treatment and thermocycling promoted different values of adhesive strength and contact angle in a zirconia-reinforced lithium silicate ceramic. Failures were predominantly adhesive, and the ceramic surface was characterized by different levels of roughness and selective exposure of crystals.

Publisher

FapUNIFESP (SciELO)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3