Mechanical Properties of Anatomic Finishing Files: XP-Endo Finisher and XP-Clean

Author:

Vaz-Garcia Eduarda Santiago1,Vieira Victor Talarico Leal1,Petitet Natasha Pereira da Silva Ferreira1,Moreira Edson Jorge Lima1,Lopes Hélio Pereira2,Elias Carlos Nelson3,Silva Emmanuel João Nogueira Leal1,Antunes Henrique dos Santos1

Affiliation:

1. Universidade Grande Rio, Brazil

2. Universidade Estácio de Sá, Brazil

3. Instituto Militar de Engenharia, Brazil

Abstract

Abstract The aim of the present study was to evaluate the cyclic fatigue of two anatomic finishing files: XP-Endo Finisher and XP-Clean. Roughness pattern and the micro-hardness of the files were also assessed. Instruments were subjected to cyclic fatigue resistance measuring the time to fracture in an artificial stainless-steel canal with a 60° angle and a 5-mm radius of curvature. The fracture surface of all fragments was examined with a scanning electron microscope. The roughness of the working parts was quantified by using a profilometer and the micro-hardness test was carried out using a Vickers hardness tester. Results were statistically analyzed using a student´s t-test at a significance level of P < 0.05. Weibull analysis was also performed. XP-Endo Finisher presented significantly longer cyclic fatigue life than XP-Clean instruments (P<0.05). XP-Endo Finisher was able to withstand 1000% more cycles to fracture when compared to XP-Clean instruments. SEM visual inspection of the fracture surfaces revealed fractographic characteristics of ductile fracture in all tested instruments; wide-ranging forms of dimples were identified and no plastic deformation in the helical shaft of the fractured instruments was observed. When mean life was compared XP-Endo Finisher lasted longer than XP-Clean with a probability of 99.9%. XP-Endo Finisher instruments also exhibited significantly lower roughness than XP-Clean instruments (P<0.05). No differences in the micro-hardness was observed between the files (P>0.05). It can be concluded that XP-Endo Finisher instruments showed improved performance when compared with XP-Clean instruments, demonstrating higher cyclic fatigue resistance and lower roughness.

Publisher

FapUNIFESP (SciELO)

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3