Is the Er:YAG laser affect the surface characteristics and bond strength of Y-TZP?

Author:

Souza-Filho Celso Bernardo de1ORCID,Moris Izabela C. M.1ORCID,Colucci Vivian1ORCID,Faria Adriana Cláudia Lapria2ORCID,Gomes Érica A.1ORCID

Affiliation:

1. , University of Ribeirão Preto, Brazil

2. University of São Paulo, Brazil

Abstract

Abstract This study evaluated the surface characteristics and bond strength of Y-TZP treated with Er:YAG laser at different focal distances. 120 Y-TZP blocks were divided into five groups (n=24), according to the surface treatment: no treatment (C-); sandblasting with silica-coated aluminum oxide particles (C+); and Er:YAG laser application at focal distances of 1mm (Er:YAG-1), 4mm (Er:YAG-4), and 7mm (Er:YAG-7). Surface characteristics were analyzed using Vickers microhardness, confocal laser microscope, scanning electron microscopy (SEM), and X-ray diffractometer (XRD). For the bond strength test, 100 Y-TZP blocks were subdivided into two subgroups (n=10), according to the resin cement used: with (MDP+) or without 10-methacryloyloxydecyl dihydrogen phosphate (MDP-). The Vickers microhardness and surface roughness were analyzed by one-way ANOVA and bond strength by two-way ANOVA and Tukey's test for both (α=0.05). Vickers microhardness differences were not observed between the groups (p>0.05); C+ showed higher surface roughness values. SEM images showed micromorphological differences between the groups. The XRD data detected tetragonal crystals for C- and, for the other groups, tetragonal and monoclinic peaks. For bond strength, no statistically difference significance were observed among the cements with or without MDP (p>0.05) but showed significant difference between the surface treatments (C+ > C- = Er:YAG1 > Er:YAG4 = Er:YAG7) (p<0.05). Suggested that the Er:YAG laser cannot replace conventional treatment with aluminum oxide particles and the presence of MDP in the resin cement had no influence on the bond strength.

Publisher

FapUNIFESP (SciELO)

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3