Affiliation:
1. University of São Paulo, Brazil
2. Faculty of Dental Medicine, Portugal
Abstract
Abstract Saliva is widely used for clinical and laboratory analysis. This study proposed to use DNA extracted from saliva for genotyping and pharmacokinetics of piroxicam. A fast and efficient genotyping method was used to determine relevant allelic variants of CYP2C9 (*2 and *3), since genetic factors can influence in non-steroidal anti-inflammatory drugs (NSAIDs) metabolization. DNA Extract All Reagents Kit® was used for DNA extraction and genotyping was performed using TaqMan® GTXpress™ Master Mix, SNP genotyping assays and a Viia7 Real-Time PCR system. Volunteers performed sequential collections of saliva samples before and after taking a single dose of piroxicam (0.25 to 72 h) which were used for pharmacokinetics assays. Piroxicam concentrations were analyzed using LC-MS/MS. Sixty-six percent of volunteers were ancestral homozygous (CYP2C9*1/*1), and 34% showed one or both polymorphisms. Of these 34%, 22 individuals showed CYP2C9*2 polymorphism, 8 CYP2C9*3, and 4 CYP2C9*2/*3. Piroxicam pharmacokinetics were performed in 5 subjects. Areas under the curve (AUC0-t(h*ng/mL)) for CYP2C9*1/*1, *1/*2 and *1/*3 were, respectively, 194.33±70.93, 166 and 303. Maximum concentrations (Cmax(ng/mL)) for these genotypes were respectively 6.46±2.56, 4.3 and 10.2. Saliva sampling was a very effective matrix for both pharmacogenetic and pharmacokinetic tests, ensuring the speed of the procedure and the well-being and agreement of the participants. Once having the knowledge about the slow and fast metabolizers, it is possible to make an adequate prescription in order to avoid the adverse effects of the medication and to guarantee greater analgesic comfort to the patients respectively.